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Abstract

The conditions under which uniform stability (uniform asymptotic stability) with respect to a part of the variables of the zero
equilibrium position of a non-linear non-stationary system of ordinary differential equations signifies uniform stability (uniform
asymptotic stability) of this equilibrium position with respect the other, larger part of the variables, which include an additional
group of coordinates of the phase vector, are established. These conditions include the condition for uniform asymptotic stability
of the zero equilibrium position of the “reduced” subsystem of the original system with respect to the additional group of variables.
Since within the conditions obtained the stability with respect to the remaining unmeasured coordinates of the phase vector remains
undetermined or is investigated additionally, partial zero-detectability of the original system occurs in this case, and the conditions
obtained supplement the series of known results from partial stability theory. The application of the results obtained to problems of
the partial stabilization of non-linear controlled systems, particularly to the problem of stabilizing an asymmetric rigid body relative
to an assigned direction in an inertial space, is considered. The partial detectability of linear systems with constant coefficients is
also investigated.
© 2008 Elsevier Ltd. All rights reserved.

The systematic investigation of the problem of stability with respect to a part of the variables posed by Lyapunov1

was begun in the paper by Rumyantsev,2 and this problem has undergone definite development.3–20 In the context of
these studies, problems of the detectability and partial detectability of dynamical systems are also of great importance. In
general terms, detectability of dynamical systems signifies21–23 that their stability with respect to a part of the variables
(the “output”) actually leads to stability with respect to all the variables. For linear systems, this problem is the classical
and thoroughly studied problem of mathematical control theory. For non-linear systems the detectability problem is
considerably more complicated, and a general approach to its investigation began to take shape only during the last 10
years. Nevertheless, in this area there are already some results that were obtained (without loss of generality) as applied
to the problem of the detectability of the zero equilibrium position of non-linear dynamical systems. Such a problem
is called the zero-detectability problem. A more general problem related to the study of the partial detectability of
dynamical systems subsequently appeared. In this case, stability with respect to a part of the variables (the “measurable
output”) signifies stability not with respect to all the variables, but with respect to another, larger part of the variables
(the “assigned output” or the V function of the phase variables). The stability with respect to the remaining group of
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variables remains undetermined or requires additional investigation. Only the first steps24–27 have been taken to solve
this problem. As in the case of detectability, partial zero-detectability is analysed without loss of generality.

This paper examines non-linear non-stationary dynamical systems of a general type, for which new conditions for
partial zero-detectability are obtained, i.e., the conditions under which uniform stability (uniform asymptotic stability)
of the zero equilibrium position of a non-linear non-stationary system of ordinary differential equations with respect
to a part of the variables signifies uniform stability (uniform asymptotic stability) of this equilibrium position with
respect to another larger part of the variables are obtained. Unlike the existing results,24–27 the approach used here
allows us to aim for a constructive analysis of the structural forms of partially detectable non-linear non-stationary
systems, and the results obtained will supplement existing results from partial stability theory. The partial detectability
of linear systems with constant coefficients is also investigated.

1. Statement of the problem

Suppose we have a non-linear non-stationary finite-dimensional system of ordinary differential equations (in vector
form)

(1.1)

We separate the variables appearing in the phase vector x into three parts and represent it in the form (T denotes
transposition)

Then system (1.1) consists of the three groups of equations

(1.2)

We put y = (yT
1 , yT

2 )
T

and adopt the standard assumptions for the theory of partial stability (y-stability)2–20 with
regard to the continuity of Y1, Y2, Z in the region

(1.3)

as well as with regard to the uniqueness and z-extendibility of the solutions of system (1.2). We will use x(t) = x(t; t0,
x0) to denote the solution of system (1.2) that satisfies the initial condition x0 = x(t0; t0, x0).

Definitions. The equilibrium position

(1.4)

of the system of differential Eq. (1.2) is

1) uniformly y1-stable (uniformly y-stable) if for any � > 0, t0 ≥ 0 a �(�) > 0 exists such that the condition ||x0|| ≤ �
leads to the condition ||y1(t; t0, x0)|| < � (||y(t; t0, x0)|| < �) for all t ≥ t0;

2) uniformly asymptotically y1-stable (uniformly asymptotically y-stable) if it is uniformly y1-stable (uniformly y-
stable) and a � > 0 exists such that for each solution x(t; t0, x0) of the system (1.2) for which ||x0|| < �, the relation
lim||y1(t; t0, x0)|| → 0, t → ∞ holds uniformly with respect to t0, x0 from the region t0 ≥ 0, ||x0|| < �.

Problem 1. It is required to find the conditions under which uniform y1 stability (uniform asymptotic y1-stability)
of equilibrium position (1.4) of system (1.2) signifies uniform y-stability (uniform asymptotic y-stability) of this
equilibrium position.
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2. The conditions for partial detectability of nonlinear systems

From Y2 we separate the terms that depend only on t and y2, and we represent Y2 in the form

Theorem 1. Let the following conditions hold:

a) the vector function Y0
2(t, y2) and its partial derivatives with respect to y2 are confined to the region t ≥ 0, ||y2|| ≤ h;

b) in the region (1.3) a continuous vector function Y∗
2(y1, y2), Y∗

2(y1, y2) 0 exists such that

(2.1)

c) the equilibrium position y2 = 0 of the “reduced” subsystem

(2.2)

is uniformly asymptotically stable.

Then, if the equilibrium position (1.4) of system (1.2) is uniformly (uniformly asymptotically) y1-stable, it is
uniformly (uniformly asymptotically) y-stable, and y = (yT

1 , yT
2 )

T
.

Proof. When the conditions of the theorem hold for system (2.2), a Lyapunov function V(t, y2) exists6 that is defined
and continuous in the region t ≥ 0, ||y2|| ≤ h, has partial derivatives with respect to y2 that are confined to that region,
and satisfies the conditions (the ai(r) are continuous monotonically increasing functions when r ∈ [0,h], and ai(0) = 0)

(2.3)

By virtue of systems (1.2) and (2.2), the derivatives of V(t, y2) are related by the expression

(2.4)

which, according to property b and inequality (2.3), can take the form

(2.5)

2.1. Uniform stability

Let us assume that the equilibrium position (1.4) of system (1.2) is uniformly y1-stable. In this case, for any � > 0,
t0 ≥ 0 a �(�) > 0 exists such that the condition ||x0|| < � leads to the condition ||y1(t; t0, x0)|| < � for all t ≥ t0. Based on
inequality (2.3), from inequality (2.5) we obtain

(2.6)

We set

We say that �2(�) > 0 is such that the condition ||y1|| < �2 leads to the condition ||Y∗
2(y1, y2)|| < �1 for ||y2|| < �.

On the other hand, by virtue of the uniform y1-stability of the equilibrium position (1.4) of system (1.2), ||y1(t; t0,
x0)|| < �2(�) for all t ≥ t0 if ||x0|| < �[�2(�)]. Since the condition ||Y∗

2(y1(t; t0, x0), y2)|| < �1 holds in the region t ≥ 0,
||y2|| < � for ||x0|| < �[�2(�)], it follows from inequality (2.6) that

(2.7)
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Let

Let us consider an arbitrary solution x(t; t0, x0) of system (1.2) with t0 ≥ 0, ||x0|| < �*(�). By virtue of inequality
(2.3), we have V(t0, y20) < a2(�3) for ||x0|| < �*(�) and, consequently, V(t0, y20) < a1(�).We will show that

(2.8)

We will assume, on the contrary, that V(t, y2(t; t0, x0)) < a1(�) when t ∈ [t0, t1), but V(t1, y2(t1; t0, x0)) = a1(�). Then,
we clearly have V̇(1.2)(t1, y2(t1; t0, x0)) ≥ 0, which contradicts condition (2.7).

Based on the condition V(t, y2) ≥ a1(||y2||), from inequality (2.8) we conclude that ||y2(t; t0, x0)|| < � for all t ≥ t0
if ||x0|| < �*(�).

2.2. Uniform asymptotic stability

We will assume that the equilibrium position (1.4) of system (1.2) is uniformly asymptotically y1-stable. The uniform
y2-stability of this equilibrium position follows from the part of the theorem that is devoted to uniform stability: for
any � > 0, t0 ≥ 0 a �*(�) > 0 exists such that the condition ||x0|| ≤ �* leads to the condition ||y2(t; t0, x0)|| < � for all
t ≥ t0.

We will show that the equilibrium position (1.4) of system (1.2) is also uniformly y2-attractive. This means that for
an assigned �*(�) > 0 and any � ∈ (0, �*) a number T(�) > 0 exists such that the condition t0 ≥ 0, ||x0|| ≤ �* leads to
the condition ||y2(t; t0, x0)|| < � for all t ≥ t0 + T(�).

Under the conditions of the part of the theorem devoted to uniform asymptotic stability, for system (1.2) a Lyapunov
function V(t, y2) exists that satisfies not only conditions (2.3), but also equality (2.4), in which the relation

(2.9)

holds uniformly over � ≤ ||y2|| ≤ �, ||z|| < ∞ and t0 ≥ 0, ||x0|| < � < �*, where � > 0 defines the region of uniform
y1-attraction of the equilibrium position (1.4) of (1.2). Let � ∈ (0, �) be given. By virtue of conditions (2.4), (2.9) a
T1(�) > 0 exists such that for

the inequality

(2.10)

and, consequently, the inequality

(2.11)

hold if t ≥ T1(�). We set

We will show that a time t* ∈(t′0, t′0 + T2(�)) exists, for which

(2.12)

Conversely, we assume that
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Then, in this time interval ||y2(t; t0, x0)|| ≥ a−1
2 (a1(�)), and the relation (2.10) holds. This leads to the contradictory

inequalities

From inequalities (2.11), (2.12) we conclude that

In fact, we assume, on the contrary that V(t, y2(t; t0, x0)) < a1(�) for t ∈ [t*, t*), but V(t*, y2(t*; t0, x0)) = a1(�). Then,
we clearly have V̇(1.2)(t∗, y2(t∗; t0, x0)) ≥ 0, which contradicts condition (2.12). Therefore, ||y2(t; t0, x0)|| < � for t ≥ t*
on the basis of V(t, y2) ≥ a1(||y2||). Consequently, ||y2(t; t0, x0)|| < � for any t ≥ t0 + T(�), where T(�) = T1(�) = T2(�)
if ||x0|| < � < �*. The theorem is proved.

Supplement to Theorem 1. Condition b of Theorem 1 can be replaced by the following condition. In the region (1.3)
a continuous scalar function Y∗

2 (y1, y2), Y∗
2 (0, y2) 0 exists such that

(2.13)

where V(t, y2) is the Lyapunov function that solves the uniform asymptotic stability problem of the equilibrium position
y2 = 0 of the “reduced” subsystem (2.2).

Theorem 2. Let conditions a and c of Theorem 1 hold, and in the region (1.3) let there be a vector function
Y∗∗

2 (y1, y2, z) such that

Then

1) if the equilibrium position (1.4) of system (1.2) is uniformly (y1, z)-stable and (simultaneously) uniformly asymp-
totically y1-stable, then it is uniformly x-stable and (simultaneously) uniformly asymptotically y1-stable;

2) if the equilibrium position (1.4) of system (1.2) is uniformly (y1, z)-stable (uniformly asymptotically (y1, z)-stable),
then it is uniformly x-stable (uniformly asymptotically x-stable).

The proof follows the same scheme as the proof of Theorem 1.

Discussion of Theorems 1 and 2.

1◦. Condition b of Theorem 1 is easily verified if the uniform z-boundedness (with respect to t0, x0) of the solutions
of the system (1.2) that begin in a sufficiently small vicinity of the equilibrium position x = 0 is known a priori
from some arguments. Such a situation is typical of, for example, systems with a cylindrical phase space.28 In
the general case, a number of conditions for uniform boundedness of solutions of general classes of non-linear
systems with respect to a part of the variables in the context of the Lyapunov function methodology can be found.6

In stabilization problems with respect to a part of the variables, both uniform asymptotic stability with respect to
a part of the variables and boundedness of the solutions of the closed system with respect to the remainder of the
variables are often required (see Section 4).

2◦. Condition b, in particular, holds if the function R does not depend on t, z (see Example 1) or is bounded with
respect to t, z.

3◦. The conditions of Theorems 1 and 2 can be carried over to the class of mechanical systems of the form
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For example, the conditions for uniform asymptotic stability of the equilibrium position x = ẋ = 0 with respect to the
variables y = (yT

1 , yT
2 )

T
, ẏ = (ẏT

1 , ẏT
2 )

T
will include the condition for uniform asymptotic stability of this equilibrium

position with respect to y1, ẏ1 and the condition for uniform asymptotic stability of the zero equilibrium position of
the “reduced” subsystem with respect to the variables y2, ẏ2.

4◦. Theorems 1 and 2 indicate fairly general classes of non-linear dynamical systems, which exhibit local partial zero-
detectability (y1/y zero-detectability) with respect to the properties of uniform stability and uniform asymptotic
stability. Other approaches to finding conditions for partial detectability, which are based either on the construc-
tion of Lyapunov functions with corresponding properties or on the use of differential-geometric methods, were
proposed in Refs. 24–27.

5◦. The proposed approach to solving the partial detectability problem and proving Theorems 1 and 2 relies on the
ideas in Refs. 4, 6, 29. Confirmation of the second part of Theorem 2 was previously obtained in Ref. 4.

Example 1. Let system (1.2) consist of the equations

(2.14)

where a, b and c are certain constants.
By introducing the new variable �1 = e−ty2

2z1, from system (2.14) we can isolate the subsystem

which defines the y1-dynamics of system (2.14). Therefore, the equilibrium position

(2.15)

of system (2.14) is uniformly y1-stable for a = 0, 2b + c < 1 and uniformly asymptotically y1-stable for a < 0, 2b + c < 1.

In this case, the “reduced” subsystem (2.2) reduces to the equation ẏ2 = by2, and when b < 0, the equilibrium position
y2 = 0 of this equation is uniformly asymptotically stable. If we also take into account that condition b of Theorem 1
holds for system (2.14), we can conclude that equilibrium position (2.15) of system (2.14) for a = 0, 2b + c < 1 is not
only uniformly y1-stable, but also uniformly (y1, y2)-stable and that the equilibrium position for a < 0, b < 0, 2b + c < 1
is not only uniformly asymptotically y1-stable, but also uniformly asymptotically (y1, y2)-stable.

3. Application to non-linear controlled systems

Suppose system (1.2) describes the perturbed motion of a control object, taking into account the positional controls
created by the design engineer. We will assume that the variables appearing in the vectors y1 and z are monitored by
the design engineer and are used to create controls, and that the variables appearing in the vector y2 are not monitored.
Suppose the controls created are such that the unperturbed motion (1.4) of system (1.2) is uniformly asymptotically
y1-stable. Since the controls for y1 = 0, z = 0 are zero controls, the dynamics of subsystem (2.2) do not depend on the
design engineer’s controls and are determined solely by the structure and parameters of the object. We will assume that
they were chosen so that the zero equilibrium position of subsystem (2.2) would be uniformly asymptotically stable.
As a result, with this chosen structure and parameters of the object, uniform asymptotically y1-stability does, in fact,
signify uniform asymptotic stability with respect to y1 and y2.

For the situation indicated in the second part of Theorem 2, this approach was previously considered as applied to
the stability of the motion of an aircraft in Ref. 30.
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4. Stabilization of an asymmetric rigid body with respect to an assigned direction in inertial space

Consider the dynamic Euler equations

(4.1)

which describe the rotational motion of an asymmetric rigid body about its centre of mass (one equation is written
out; the other two are obtained from it by cyclic permutation of the subscripts 1, 2 and 3). In system (4.1) wi are the
projections of the angular velocity vector of the body onto its principal central axes of inertia si, Ai are the principal
central moments of inertia, ui are the control moments, and i = 1, 2, 3.

Along with the equations defined by (4.1), let us consider the kinematic Poisson’s equations that determine the
orientation of the body

(4.2)

in which �i are the projections of the unit vector directed along the vertical axis that is stationary in the inertial space
onto the principal central axes.

When ui = 0, Eqs. (4.1) and (4.2) allow of the particular solution

(4.3)

which corresponds to the equilibrium position of the body in which the direction of one of its principal central axes of
inertia (the s2 axis) coincides with the direction of the stationary vertical axis.

Introducing the new variables

we compose the system of equations of the perturbed motion in deviations from the equilibrium position (4.3)

(4.4)

We introduce the notation

Problem 2. Find the control moments ui that solve the partial stabilization problem of the equilibrium position x = 0
of system (4.4): the y-stabilization problem of this equilibrium position. Here the behaviour of the closed system (4.4)
with respect to the variable z1 must be specified by the relation

(4.5)

where � is an a priori assigned number.

This partial stabilization problem calls for stabilization of one of the principal central axes of inertia (the s2 axis)
in the direction of the stationary vertical axis. When solving the problem, unlike the stabilization of the equilibrium
position x = 0 of system (4.4) with respect to all the variables, the angular velocity of the body about the s2 axis does
not vanish. Instead, the magnitude of this angular velocity tends to the value � that was assigned a priori (the direction
of rotation plays no role).
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Assertion 1. The solution of Problem 2 gives the non-linear control moments

(4.6)

Proof. Omitting the intermediate mathematical operations, it can be shown that closed system (4.4), (4.6) yields the
linear system of differential equations

(4.7)

Since the y1-dynamics of closed system (4.4), (4.6) are defined by system (4.7), the equilibrium position x = 0 of
system (4.4), (4.6) is uniformly asymptotically y1-stable; y1 = (y11, y12)T. The “reduced” subsystem of the type (2.2)
consists of the equations

(4.8)

and its zero equilibrium position y2 = (y11, y12)T = 0 is uniformly asymptotically Lyapunov stable.

The components Ri of the vector R-function have the form

and the z1 variable of system (4.4), (4.6) is bounded. Therefore, condition (2.13) holds for the Lyapunov function
V = y2

21 + y2
22 that solves the uniform asymptotic stability problem of the “reduced” subsystem (4.8).

Based on the supplement to Theorem 1, we conclude that the equilibrium position x = 0 of system (4.4), (4.6) is
not only uniformly asymptotically y1-stable, but also uniformly asymptotically y-stable; y = (yT

1 , yT
2 )

T
. The dynamics

of the z1 variable of system (4.4), (4.6) are specified by the equation ż1 = z1(−z2
1 + �2), and, therefore, the limiting

relation (4.5) holds. The assertion is proved.

Remarks.

1◦. Problem 2 is the problem of stabilizing the equilibrium position x = 0 of system (4.4) with respect to a part of the
variables by means of additional control moments. We note that ui(x) → 0 when t → ∞ (i = 1, 2, 3).

2◦. The proposed approach to solving Problem 2 can be extended to the case of control by means of flywheels.

5. The conditions for partial detectability of linear systems with constant coefficients

For linear systems with constant coefficients, along with the problem of stability with respect to a part of the
variables,10,12,15 the problem of finding a solution with respect to a part of the variables,31 whose analysis by classical
computational methods32,33 is difficult, was also considered. In this context it would be interesting to analyse the
previously untreated partial detectability problem of linear systems, which can be used to find the conditions under
which asymptotic stability of the system with respect to one part of the variables signifies its asymptotic stability with
respect to the other, larger part of the variables. These conditions call for an analysis of only the structural forms of
the system without an analysis of their asymptotic stability with respect to the respective groups of variables, and after
appropriate refinement of the notion of partial detectability, these conditions are not only sufficient, but also necessary.
Unlike non-linear systems, in which the Lyapunov function methodology is used to analyse partial detectability, the
analysis of linear systems relies on the mathematical tools of linear algebra.
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Let (1.1) be a linear system of ordinary differential equations with constant coefficients. Taking into account the
splitting of the x-vector into three parts described in Section 1, we present this system in the form of three groups of
equations

(5.1)

where Ai, Bi, Ci (i = 1, 2, 3) are constant matrices of the corresponding dimensions. We also set y = (yT
1 , yT

2 )
T

.
The linear system (5.1) is asymptotically y1-stable (asymptotically y-stable) if the y1-component (y-component) of

the solution x(t) tends to zero as t → ∞ and for all t0 ≥ 0, x0.
We stipulate that the y1- and y2-components of the solutions of system (5.1) have an identical structure if the

dimensions of the system10,12 that specify the y1- and y2-dynamics of system (5.1) are identical and the same as the
dimensions of the system that specifies its y-dynamics.

Definitions. System (5.1) is called:

1) partially detectable (y1/y-detectable) if the asymptotic y1-stability of this system signifies its asymptotic y-stability;
2) strongly y1/y-detectable if it is y1/y-detectable and, in addition, the y1- and y2-components of the solutions have

an identical structure.

Let us consider the problems of the partial and strong partial detectability of linear system (5.1). We introduce the
matrices

Theorem 3. If the condition

(5.2)

holds, system (5.1) is y1/y-detectable.

Proof. If condition (5.2) holds, the y1-dynamics and y-dynamics of system (5.1) will be specified10,12 by linear
auxiliary systems of the same dimension (the dimension m + rank K1 = m + k + rank K2) and this dimension will not
exceed the dimension of system (5.1). Since the first m components of the solutions of these auxiliary systems of the
same dimension are identical, the sets of roots of the characteristic equation of these auxiliary systems are subsets of
the set of roots of the characteristic equation of system (5.1) and are also identical. In such a situation, asymptotic
y1-stability of system (5.1) will signify its asymptotic y-stability. The theorem is proved.

Discussion of Theorem 3.

1◦. The condition (5.2) for partial detectability calls for an analysis of only the structural form of system (5.1) without
an analysis of its asymptotic stability with respect to the corresponding groups of variables. In this sense, we can
understand why condition (5.2) does not cover the cases of “weak” coupling in system (5.1), for example, the case
in which B1 and C1 are zero matrices.

2◦. The condition rank K1 = k + p for the detectability (y1/x-detectability) of system (5.1), which was previously
obtained in Refs. 10,12 when solving problems of stability with respect to a part of the variables, follows from
condition (5.2) as a special case. (Note that the term “detectability” was not used in this case.)

3◦. In the case in which system (5.1) is unstable or neutral with respect to the z-variables, the partial detectability (as
well as partial stability) can be disrupted already for a small variation of its coefficients (in this context, see Refs.
10,12,15).
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To study strong partial detectability we consider the matrices

Theorem 4. For strong y1/y-detectability of system (5.1) it is necessary and sufficient that the condition

(5.3)

holds.

Proof. Necessity. Let the system be strongly y1/y-detectable. In this case, the dimensions of the systems that specify
the y1- and y2-dynamics of system (5.1) are identical and are the same as the dimension of the system that specifies its
y-dynamics. According to the results previously obtained,10,12 the equalities in (5.3) hold in this case.

Sufficiency. Let the equalities in (5.3) hold. In this case, the dimensions of the systems that specify the y1- and y2-
dynamics of system (5.1) are identical and are the same as the dimension of the system that specifies its y-dynamics.10,12

In such a situation, asymptotic y1-stability of system (5.1) will signify its asymptotic y2-stability. As a result, system
(5.1) is strongly y1/y-detectable.

Example 3. Let system (5.1) have the form

(5.4)

where � is some constant. In this case

and condition (5.2) holds for all � 
= 0. Therefore, on the basis of Theorem 3, when � 
= 0, system (5.4) is y1/y-detectable,
and y = (y1, y2). In addition, when � 
= 0, condition (5.3) holds, and on the basis of Theorem 4, strong y1/y-detectability
of the system (5.4) occurs.

In the case when � = 0, although condition (5.2) does not hold, system (5.4) is also y1/y-detectable, but unlike the
case when � 
= 0, the dimension of the auxiliary system

which describes the behaviour of the variable y1, is smaller than the dimension of the auxiliary system

which describes the behaviour of the variables y1, y2.
Therefore, when � = 0, system (5.4) is not strongly y1/y-detectable. Condition (5.3) also does not hold in this case.
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6. Conclusions

New conditions for partial zero-detectability have been obtained for non-linear non-stationary dynamical systems
of a general type. Unlike the previous studies,24–27 in which the conditions for partial zero-detectability are formulated
in the context of not always easily tested requirements for the Lyapunov functions or they require fairly complex trans-
formations of the original system, the proposed approach provides a way to obtain easily interpreted conditions for
partial detectability based on an analysis of the structural forms of systems that can be studied directly. The Lyapunov
function methodology is used here only as a means for obtaining such conditions. For linear systems with constant coef-
ficients, conditions for partial detectability that call for an analysis of only the structural forms of these systems have been
obtained. The classical conditions for complete (not partial) detectability of linear systems follow from these conditions.
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